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Abstract--The interference effects between two burning spheres have been analyzed utilizing Labowsky's 
approach for problem formulation leading to the Laplace equation in a potential function and employing 
the finite-element method for its solution. The effect of separation on the interaction coefficient, the 
potential field and the flame geometry has been established. The critical spacing providing the demarcation 
between merged and separated flames is shown to be a function of the stoichiometric coefficient, radius 
ratio, ambient oxidizer concentration and ambient temperature. Correlations between the critical non- 
dimensional spacing and the critical interaction coefficient and the above parameters have been obtained 
for both equal- and unequal-sized drops. The cone criterion, originally proposed for equal drops, is 
extended to the case of unequal drops and the correlation between the cone half-angle and the parameters 

has been established. Copyright ~, 1996 Elsevier Science Ltd. 

1. INTRODUCTION 

In the recent past, considerable attention has been 
focused on the interference effects which occur when 
two fuel drops vaporize or burn  in close proximity to 
each other [1 7]. The deviations from isolated single 
droplet vaporization or combustion behavior have 
implications for the modeling of spray diffusion 
flames. In all the above studies, the problem is reduced 
to the solution of the Laplace equation in the appro- 
priate geometry. While Brzustowski et al. [3] and 
Umemura  et al. [6, 7] have employed the bi-spherical 
co-ordinate system to solve the problem, Labowsky 
[1, 2, 4, 5] has utilized the modified images method 
for the solution. The former method is restricted to a 
system of two droplets, while the latter method may 
be extended to arrays of more droplets. 

In the present work, the interference effects between 
two burning spheres have been analyzed utilizing 
Labowsky's approach for problem formulation, lead- 
ing to the Laplace equation in a potential function 
and employing the finite-element method for solving 
it. 

2. PROBLEM FORMULATION 

With the standard set of assumptions employed in 
the literature for quasi-steady non-convective spher- 
ico-symmetrical droplet combustion, the combined 
fuel/oxidizer and temperature/oxidizer conservation 
equations reduce to the Shvab-Zeldovich form 

V'[pv(Yf-- Yois) - p D V ( Y f -  Yo-is)] = 0 (1) 
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V" [pv( T + YoQiJCp) 

k 
- C~pV(T+ YoQis/Cp)] = 0. (2) 

The mass averaged velocity v may be expressed in 
terms of a velocity potential 

v = - D ln(1 + B)Vq~ (3) 

where 

- I n  [(1 - Yr+ Yo~i~)/(1 + Y~i~)] 
~b = (4) 

ln(1 +B)  

B is the transfer number  for combustion 

B= [Cv(T~-T~)+QYo~/i~]/L,. (5) 

The steady-state mass conservation equation leads 
to the Laplace equation 

v~4, = o (6) 

subject to the following boundary condit ion : 

10 on the droplet surface 
~b = far from the droplet. 

The introduction of the velocity potential q~ has 
enabled the non-linear fuel/oxidizer conservation 
equation (1) to be reduced to the linear Laplace equa- 
tion (6). 

The interaction coefficient q is obtained as follows : 

m = f f p v d s  (7) 

= m~sor/ (8) 
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NOMENCLATURE 

B transfer number Yo 
Cp specific heat of the gas phase Y,,, 
D binary diffusion coefficient 
d drop diameter 
i~ stoichiometric coefficient ( = Y . / Y , )  

K burning constant 
k thermal conductivity of the gas phase 
k non-dimensional separation: equal to 

s:d, for unequal-sized drops 
Q heat of combustion 
r radius 
rr radius ratio 
S distance between the centers of drops B 
T ambient temperature c 
T~ drop surface temperature S 
t mass-averaged velocity s 
lq mass fraction of the fuel z 
Y~.L mass fraction of the fuel at the drop int 

surface iso 

mass fraction of the oxidizer 
ambient oxidizer mass fraction. 

Greek symbols 
:~ cone half-angle 
() velocity potential 
t 1 interaction coefficient = m / m ,  .... 

Subscripts 
bigger drop 
critical value 
smaller drop 
drop surface 
far from the drop 
interacting drop 
isolated drop. 

where ~it~,, is the burning rate of an isolated single 
droplet of  the same size 

tili~,, = 4 r r r p D  ln(I + B). (9) 

The dependent variable 4) here replaces the dimen- 
sionless vapor density p* for vaporizing spheres. 

3. NUMERICAL SOLUTION PROCEDURE 

Although the method of images employed by 
Labowsky may be applied to both symmetrical and 
unsymmetrical arrays, it appears to be cumbersome, 
while the bi-spherical coordinate system can only be 
applied to binary droplet systems, and a divergence 
problem is encountered. The finite element method 
offers a simpler, more direct and versatile method of 
solving the governing equation, which is linear, lead- 
ing to convergent solutions. 

By focusing attention on a binary sphere system, in 
the first instance, it is possible to reduce the problem 
to an axisymmetric one, with the axis passing through 
the centers of the spheres. 

For this case the Laplace equation is 

?:4) 1 ~4) ~ 4 )  
2-~ + - -  + = 0  (10) 
UI*~ r ~F ( : z -  

which can be written as 

~F," / ,'4)\7 ,':4) 
rL~r~r ('?r)J + ('z- = 0  ( l l )  

with the same boundary condition (4)= 1) on the 
circumference. The finite element mesh is constructed 
using axisymmetric triangular elements. Within each 
element, the 4) distribution is related to the three nodal 

values by three interpolating functions N, (r ,  z )  as fol- 
lows 

3 

4) = ~ N,(r,z)4)i (12) 
,=~ 

where N,. i = 1, 2, 3 are the shape functions and 4)i, 
i 1, 2, 3 are the nodal values. 

The shape function is given by 

1 
N,(r, =) - 2~l-(a, + b ,r+  c,z) (13) 

where a~ = r l z a - t k z i ;  b i = Z, 2 a " C, = r k - - r  i and A is 
the area of the element. 

Galerkin's method is used to develop the finite 
element equations. It is basically a weighted residual 
method, where an approximate solution is substituted 
into the differential equation under consideration. 
Since the approximate solution does not satisfy the 
equation, a residual or error term R results. The Galer- 
kin's method requires that 

i N i R d V  = 0 .  ( 1 4 )  

The weighted residual integral for this case can be 
written as 

t 1 ( ~74) 
£ [ N ]  [ r ~ ? ~ r ( r ? - 5 7 ) + ~ l d V = 0  (15, 

which results in a set of element equations of the form 

[K] ..... { 4)},, ×, = i' .1",,,., (16) 

where 
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where 

[K] = £r [~r [NIT ~r~ + 0[NIT ~[N]Id V 
z- az J (17) 

d V  = 27trdA and {f} = 0. 

The above set of element equations are solved after 
incorporating the boundary conditions. 

A very fine mesh is taken in the region very close 
to the spheres. Both equal-sized and unequal-sized 
spheres have been investigated. The outer boundary 
is kept at 20 times the radius of the bigger sphere, since 
it is found that the location of the outer boundary does 
not affect the results when it is of the order of 20 r. 

In order to calculate the interaction coefficient 7, 
the derivatives of q5 in the radial direction on the 
droplet are to be computed and integrated over the 
droplet surface. The derivatives are calculated by fit- 
ting a quadratic equation to the field variable q~ as a 
function of the radial distance from the center of the 
concerned droplet 

dp(R) = ao + al R + a 2 R  2. (18) 

4. RESULTS AND DISCUSSION 

4. l. Ef fect  o f  separation on the interaction coefficient 
Theoretically, the interaction coefficient r/is a func- 

tion only of the dimensionless separation L and the 
radius ratio rr. Experimentally, Xiong et al. [8] have 
shown that q depends not only on the instantaneous 
geometry of the droplet assemblage characterized by 
the droplet sizes and separation distances, but also 
on the initial and aerothermochemical aspects of the 
system, such as the initial droplet sizes and separation 
distances, the fuel volatility and the transport proper- 
ties. 

The present results of q as a function of L show 
good agreement with those of Labowsky [4] and Ume- 
umura et al. [7], with a maximum deviation of 4%. It 
is also seen that the approach to the isolated sphere 
value is smooth and continuous, and results have been 
obtained over a wider range of L. 

Figure 1 shows the variation of q with the non- 
dimensional spacing L for the four different values of 
radius ratio rr. When the spacing between the droplets 
is increased, q approaches the isolated sphere value of 
unity asymptotically. At a given separation distance, 
t/for the smaller drop is less than that for the bigger 
drop. The curves for the smaller drops cross each 
other at L greater than 5. This occurs because for a 
fixed distance between the centers of the drops, when 
the radius of the smaller drop is decreased, the surfaces 
of the interacting drops recede from each other, thus 
causing a reduction in the interaction between the 
drops. In the case of equal-sized drops, the burning 
rate is minimum when the drops are touching each 
other, and monotonically increases as the spacing 
between the drops is increased, and approaches the 
isolated drop value of L greater than 10. 

The following equations represent the variation of 
r/with L for different rr, as shown in Fig. 1 : 

(a) rr = 1 :qB = qs = 0.56+0.16L 

- 0.0022L z +0.001L 3 (19) 

(b) rr = 2:~/B = 0.84+0.05 L-0.006L2 

+ 0.0003L 3 (20) 

qs = 0.25 + 0.50L - 0.15L 2 + 0.024L 3 -- 0.002L 4 

(21) 

(c) rr = 4 :t/B = 0.022 ln(L) +0.945 (22) 

qs = 0.13 + 0.6L-- 0.187L 2 + 0.03L 3 - 0.002L 4. 

(23) 

The subscripts B and S refer to bigger and smaller 
drops, respectively. 

4.2. Effect  o f  separation on the #)-field 
Figure 2(a, b) shows the contour maps of 4} for 

equal spheres at two different spacings. It can be seen 
that the gradient of q5 in the region between the drops 
is decreased due to the interaction, and since the mass 
flux is proportional to the gradient of ~b, there is a 
reduction in the burning rate. The 4} field around each 
drop changes when the spacing is increased and tends 
towards that existing around an isolated drop. 

A similar effect is observed in the case of drops of 
different sizes; the q~ field is more distorted in this 
case. It is also found that the smaller drop is more 
affected by the interaction than the bigger drop. This 
can be ascribed to the fact that the ratio of the surface 
area facing the neighboring drop to its overall surface 
area is larger for the smaller drop. While calculating 
the 4} gradient around the smaller drop, it has been 
found that at smaller spacing, the bigger drop's influ- 
ence is felt not only on the side of the smaller droplet 
facing it, but also on the other side to a considerable 
extent. Hence, r/ for the smaller drop is a mono- 
tonically increasing function of spacing between the 
drops. While the burning rate of the bigger drop also 
decreases, the reduction is less than that for the smaller 
drop. 

4.3. Location o f  the f lame  surface 
The location of the quasi-steady flame surrounding 

the drops may be determined if it is assumed that the 
combustion rate is extremely rapid and the com- 
bustion reaction occurs at an infinitesimally thin zone. 
For this case, the flame region becomes a flame sheet. 
Setting Yf = Yo = 0 at the flame sheet, it follows from 
equation (4), that the quasi-steady flame will be 
located at 

4} = ~bv = In(1 + Yo~is)/ln(1 +B) .  (24) 

This expression for the flame surface is similar to 
that obtained in quasi-steady single droplet com- 
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Fig. 1. Effect of inter-sphere separation on interaction coefficient for different radius ratios. 
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Fig. 2b. The q~ field surrounding two interacting droplets; 
r r =  I ; L = 8 .  

bustion theory, except that here the flame surface is 
not spherical, but is distorted by the interactions. In 
the region between the drop and the flame, only fuel 
vapour exists. This implies that the fuel is completely 
consumed at the flame surface, thus preventing it from 
reaching the ambience. The oxidizer is also completely 
consumed at the flame surface, thus preventing it from 
reaching the drop surface. Thus at the flame surface 
g , =  E , = 0 .  

4.4. Merged flumes and separatedJtames 
These are two distinctly different types of  flame 

surface, depending on the separation between the 
drops. When the drops are close together, a single 
flame surface encloses both the drops and appears 
in a more distorted form. On increasing the spacing 
between the drops, the flame eventually separates, and 
each drop is surrounded by an individual flame. These 
effects are shown in Fig. 3 for equal drops for a given 
combination of  Y,,_~ and T , .  The critical separation 
distances are obtained from such series of  figures for 
different combinations of  rr, Yo~ and T~. 

It can be seen that the flame surfaces are more 
distorted on the side facing each other. This may be 
ascribed to the fact that the presence of  the second 
drop prevents the penetration of  the oxidizer towards 
the first drop. The presence of  the neighboring drop 
brings in two effects : the first is to decrease the gradi- 
ent of  qS, and the second is to decrease the effective 
cross-sectional area through which the fuel and oxi- 
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Fig. 3. Effect of L on flame shape rr = Yo~,r = 0.2, Tmf = IYC, fuel: n-heptane. 

Fig. 4a. Effect of Yoinf o n  flame shape; rr = 1, L = 5, 
Tin f = 600°C, fuel : n-heptane. 
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Fig. 4b. Effect of Tin f o n  flame shape; rr = 1, L = 5, 
Yoinf = 0.2, fuel : n-heptane. 

dizer are transported. The mass flux is proportional to 
both the gradient of 4> and the effective cross-sectional 
area; hence the spherical symmetry characteristic of 
isolated drops is destroyed by the presence of a neigh- 
boring interacting drop. For large values of inter-drop 
spacing, the flames become more spherically sym- 
metric around the individual drops. At these spacings, 
it is found that the burning rate of the interacting 
drops reaches 99.9% of the isolated drop value. 

4.5. The e f fec ts  o f  ambien t  t empera ture  and  o x y g e n  

concentrat ion  on f l a m e  shapes  

The effects of T~ and Yo~ have been investigated 
by noting the role they play in determining the value 
of qSv in equation (24) and also through their influence 
on B, equation (5). 

Figure 4(a) shows the effect of Yo~ on flame shapes 
for equal drops at L = 5 and T~ = 600°C. Figure 4(b) 

shows the effect of T~ on the flame shapes for equal 
drops at L = 5 and Yo~ = 0.2; as T~ increases, the 
flame moves away from the drops. A change in T~ 
affects the transfer number B in the expression for ~bv. 
An increase in T~ increases B, which means that the 
driving force for mass transfer increases. Since this 
results in an augmentation of the diffusion of fuel 
vapor, the flame moves away from the drops. It is seen 
that the effect of Yo~ is much stronger than that of 
T~ over the ranges of these parameters investigated. 
This is directly ascribable to their relative influence on 
4>F and B : in the expression of q~F, the effect of Yo~ is 
more dominant than the effect of T, thus resulting in 
the behavior observed here. 

Figure 5(a, b) shows the variation of B with Yo~ 
and T~, and the consequent variation of ~bF with Yo~ 
and T~. The transfer number B increases linearly with 
Yo~ ; with increasing T~, B increases, q~v increases 
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Fig.  5b. V a r i a t i o n  o f  4)H A~I+ vs  Y, , , .  

1.0 

steeply with Y,,, upto T,,, z 0.2, and then the increase 
becomes less steep. 

4.6. The critical non-dimensional spacin.q L .  

It is possible to define a critical non-dimensional 
spacing L~ at which a merged flame just separates into 
two flames, with increasing inter-drop separation. For  
a given value of  radius ratio (rr), there exists a unique 
value of  L~ for each value of  05F. Figure 6(a) shows 
the effect of  radius ratio on the variation of L~ with 
05v- It may be seen with reference to Fig. 2(a), for 
instance, that the contour corresponding to 05 = 0.4 
has separated, but not at 05 = 0.3. Since 05 has a value 
of  1 on the drop surface and zero far away from the 
drop, this shows that L increases as 05 decreases ; this 
also applies to the relationship between 05v and L,. 
Figure 6(a), together with equation (24), provides a 
criterion which determines the geometry of  the flame. 
In Fig. 6(a), the region below the curves corresponds 
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Fig. 6b. Effect  o f  r r  on  the  v a r i a t i o n  o f  ~1~ wi th  (l w .~M~. 

to merged flames, while the region above the curves 
corresponds to separated flames. The curves represent 
the locus of  points corresponding to the critical spac- 
ing at which the two adjacent flames are just touching 
each other. 

Figure 6(a) establishes the fact that the critical spac- 
ing is a function only of  05~ and rr. As far as the effect 
of rr is concerned, it is seen that at a given 05,_, L,  
decreases with rr. An increase in the radius ratio 
decreases the interaction effect on the bigger drop. 
This brings the flame closer to the smaller drop. 

For  different fuel oxidizer combinations, and tem- 
perature and oxygen concentration in the ambience, 
the critical separation may be obtained by first deter- 
mining 05F from equation (24), and then for the speci- 
fied value of  rr, referring to Fig. 6(a). 

Figure 7(a) shows the effect of  T,. on the variation 
of  L~. with Yo~ for a value o f r r  = 4. It is seen that the 
effect of  Y,,~ is stronger than that of  7", ; this is true 
for the other two radius ratios also. An increase in the 
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radius ratio increases the gradient of  the fuel vapor  
around the smaller drop, and thereby brings the flame 
closer to the smaller drop. 

Figure 7(b) shows the effect of  radius ratio on the 
variation of  Lc with Yo~ for T~ = 600 K. It is seen 
(by comparison with other values of  T~) that the effect 
of  Yo~ is more dominant  than that of  T~ ; increasing rr 

causes a reduction in Lc. 

4.7. The cri t ical  interact ion coef f ic ient  

The critical interaction coefficient qc may be defined 
as the value of  r/when the flames are exactly touching 
each other. While ~/is a function of  rr and Lc, qc is a 
function only of  rr. The effect of  rr on the variation 
of  r/c and OF is shown in Fig. 6(b). The effect is quali- 
tatively the same for different values of  rr. An increase 
in q5 v decreases Lc, as shown in Fig. 6(a) ; r/increases 
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Fig. 8b. Effect of rr on the variation of q~ with Yomf; 
T~nf = 600°C, fuel : n-heptane. 

on increasing L, and hence qc decreases when qSv is 
increased. 

Figure 8(a) shows the effect of  T~ on the variation 
of  the critical interaction coefficient qc, for a value of  
rr = 4. As Yo~ increases the interaction effect 
decreases and hence, qc decreases. It is seen from the 
figure that the smaller drop (S) suffers more due to 
the interaction than the bigger drop (B). 

Figure 8(b) shows the effect of  radius ratio on the 
variation of  r/o with Yo~, for T~ = 600 K. This again 
shows the stronger influence of  Yo~ and rr than T~, 
and the greater interference effect suffered by the smal- 
ler drops in the case of  unequal drop pairs. 

4.8. Correlat ions f o r  n -hep tane  

The correlations for Lc and qo, for the case of  n- 
heptane as fuel, are presented below 

(a) Crit ical  non-d imens ional  spacin9 Lc. 
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k~ - a l  r / ' T ~ )  - Y',~, (25) 

L~ = a2rrl'( T~ /298)' ( Y,,~/0.232y / 

a~ - 2.72: a_, = 6.05 

h =  0.35: c = 0 . 0 5 :  d =  0.34 (26) 

correlation coefficient = 0.996. 
(b) Critical interaction co{{~)~cient /or the hi.qger 

drop, *ld~. 

q~. = a~rr' T l, Y~, (27) 

q~B = a~rr"( T , /298)I (  I'\,,/0.232) '~ 

a~ = 0 . 9 2 :  a4 - 0 . 9 5  

e =  - 0 . 0 2 ;  f = 0 . 0 0 2 :  g -  --0.016 (28) 

correlation coefficient = 0.707. 
(c) Critical interaction co¢?[licienl j o r  the smaller 

drop ~lcs. 

~l~.s - a, r/ 'Ti ,  YJ,,, (29) 

q~s = a j rh(T~/298) ' (  Yo,/0.232)' 

a 5 = 0 . 8 8 :  a~, =0 .97  

h =  - 0 . 0 6 :  i = 0 . 0 0 6 :  . / =  -0 .04 (30) 

correlation coefficient = 0.95. 
It may be observed that the critical non-dimensional 

spacing, L,. is almost independent of  T, : and the 
critical interaction coefficient, q,. is quite independent 
of r r ,  T,  and Y,~, for both the bigger and the smaller 
spheres. 

4.9. The cone criterion./br merged and separated flame 
Brzustowski et al. [3] have proposed a 'cone cri- 

terion" whereby two equal-sized drops burn with sep- 
arated individual flames when they lie wholly within a 
cone whose half-angle depends only on stoichiometry. 
However, equation (24) shows that L~ depends not 
only on stoichiometry, but also on ambient conditions 
such as oxygen concentration and temperature. At the 
limiting condition, when the sphere is tangential to 
the cone, the cone half-angle is given by 

= arc sin (r/h) (31 ) 

(and not arc tan (r/h) as given in ref. [3]). Brzustowski 
et al. also indicated that their cone criterion might not 
be applicable to unequal spheres. 

It is shown below that the cone criterion can be 
proposed in a form which is applicable for both equal 
and unequal drops. For  unequal drops there are two 
cones, one for the bigger drop and another for the 
smaller drop. It can be shown that 

2rr 
:~ = arcs inr (2L~+ 1)-- [ (32) 

2rr 
ae = arc sin (33) 

r(2L~. -- 1 ) + 1 " 

For  equal drops, rr = 1, and 

:q = ~ = arc sin(l/L~). (34) 

While for equal drops the enveloping cone are sym- 
metrical about  the yy axis, for unequal drops they are 
unsymmetrical. 

Figure 9(a) shows the enveloping cones for n-hep- 
tane as the fuel. for equal drops (rr = 1) ; T~ = 1 5 C  
and Y~,, = 0.2. For  this case. at = :~2 = 9 1 6 '  (while 
in ref. [3] a value of  6 .68  was obtained). The drops 
marked A burn together with a single flame, while 
those marked B burn with independent flames, 
and those marked C burn with flames which are 
.just on the point of  separation. 

For  unequal drops, with rr = 2, with the same ambi- 
ent conditions as before, ~, = I1 25" and ~2 = 6 18'. 
These cones are shown in Fig. 9(b). 

Figure 10 shows the variation of  cone semi-angle 
with ~b~ for three different values of  radius ratio. For 
any given fuel-oxidizer combination (fixing the stoi- 
chiometry), and for given ambient conditions of  tem- 
perature and oxidizer concentration, ~b> is to be deter- 
mined, from which the values of  ~ for the bigger and 
smaller drops, or for equal drops, may be obtained 
from this figure. 

Umemura el al. [6] have also proposed a criterion 
which determines the form of flame for equal drops, 
in terms of  plots of  (Yo, Wvvv/Wo/vo) = (Y, , , / iO vs 
for four different values of  YV.L. They propose that 
the region below the curves corresponds to merged 
flames, while the region above the curves corresponds 
to separated flames. For  n-heptane with Yo,. = 1, 
Y., :i~ = 0.285, but the range given for the ordinate is 
from 0 to 20, with steep variations in the range from 
0 to 3. In general, it can be shown that the maximum 
range in the v-axis applicable to the case of  n-paraffins 
is from 0 to 1. For  the n-paraffin represented by 
C,,H_~,,. e, if M is the maximum value of  the ordinate 
corresponding to Y,,,, = 1.0, it can be shown that 

1 - S M  
(35) r / -  2 4 M - 7  

It is seen that for realistic values of  n (such as 1. 
2 . . . ) ,  M has to be less than I. 

They have also presented three typical flame sur- 
laces for benzene. They have taken Yv,  = 0. l for ben- 
zene, which is obviously too low a value. This leads 
to flame stand-off distances which are not realistic: 
the flame surface is located too close to the drop 
surface, which is not realistic, since even for the case 
of a single drop, the flame radius for hydrocarbon 
fuels is nearly 15 times the drop radius. 

5. CONCLUSIONS 

The Laplace equation in terms of  the velocity poten- 
tial based on the Shvab-Zeldovich formulation has 
been solved for a binary system of burning fuel 
spheres, employing the finite element technique. 
Results have been obtained for the interaction 
coefficient, the potential field and the flame geometry 
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A -  Iderged Flames 

B -  Separate Flames 

C - Touching Frames 

ot 1 =¢z2= 9o17 ' 

Fig. 9a. Enveloping cones ; rr = 1, Ti,f = 15'~C, Yoinf = 0.2, fuel : n-heptane. 

A -  Merged Flames ~ 1  = 1 1 ° 2 5 '  
B - S e p a r a t e  F l . a m e s  

C -  T o u c h i n g  F r a m e s  °c2  = 6 ° 1 5 '  

Fig. 9b. Enveloping cones; rr = 2, Tin f = 15°C, Yo~,f = 0.2, fuel: n-heptane. 
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Fig 10. Effect of rr on the variation of • with q~FLamE. 

as a funct ion of  the inter-sphere separat ion.  The criti- 
cal spacing, which provides the demarca t ion  between 
merged and  separated flames, is shown to be a func- 
t ion of  the s toichiometr ic  coefficient, radius ratio, 
ambien t  tempera ture  and  ambien t  oxygen concen-  
trat ion.  Corre la t ions  have been obta ined,  for bo th  
equal  and  unequal-s ized drops,  between the critical 

spacing and  the critical in teract ion coefficient, and  
the above  parameters .  The cone criterion, which was 
originally proposed for equal  drops, has  been 
extended in this study to the case of  two unequal  
d rops ;  a corre la t ion has been ob ta ined  between the 
cone half-angle and  the relevant  parameters .  
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